
Unvalidated Parameters W/WebGoat

You will use the following Virtual Machine (VM) and application in this lab:

 Windows Server 2012 VM
 WebGoat application from OWASP
 Burp Suite Community Edition from PORTSWIGGER
 Web Browser (Firefox)

Before we proceed you will need to download and setup the lab environment on your
Windows Server 2012 VM.

Step 1

Log in to your Administrator account on your windows server 2012 VM. Use your
administrator account credential from your previous lab. If you followed setup according to
previous lab setup the following login credential will work.

User: Administrator

Password: Admin123

Minimize Windows Server manager dashboard. we will use it late to disable windows IIS
web server. Open internet explorer and follow the steps to download and setup applications.

Download mozilla firefox web browser for convenience. Enter the following URL on your
internet explorer and download the setup file and install firefox on your VM.

URL: https://www.mozilla.org/firefox

Open your firefox web browser and download few more applications to setup your lab
environment.
Visit WebGoat official web site and download WebGoat-OWASP_Standard-5.2.
URL : https://www.owasp.org/

https://www.mozilla.org/firefox
https://www.owasp.org/

Redirect to sourceforge.net. Sourceforge is a centralized web-based service that offers software
developer a online platform to control and manage free and open-source software project.

Right click WebGoat-OWASP_Standard-5.2.zip file and click Extract all.

By default, the file is extracted inside the same download folder you can make change to your
extract directory according to preference.

Extracted location: C:\Users\Administrator\Downloads\WebGoat-OWASP_Standard-
5.2\WebGoat-5.2

The extracted folder contains tomcat webserver, java files and .bat windows executable file.

Step 2

We need to download java to run the WebGoat application. You can download java from java
official website. Enter the following URL on your web browser and follow the steps to install
java on your Windows Server 2012 VM

 URL: https://java.com/

https://java.com/

Run the java setup file after complete download.

Click on Install and it will take a while download and complete the java setup on you Windows
Server 2012 VM. Make sure you need to restart your Web Browser after successfully completing
a java setup.

Step 3

We need to install Burp Suite on our windows server 2012 VM. Open your web browser and
enter the following URL to download Burp Suite free community edition.

URL: https://portswigger.net/burp/communitydownload

https://portswigger.net/burp/communitydownload

Follow the setup instruction and use the default setting don’t make changes. After installation,
you can access the application from your windows server startup screen or application shortcut
from Desktop.

Exercise 1 Parameter Tampering

In this lab, we will use the WebGoat application form OWASP to do perform some attack on
web application. It is good learning environment and allows us to exploit a number of different
web application specific vulnerabilities.

Webgoat runs as a webserver. In order to start it up, you must first stop the IIS Webserver. To do
so we can access our Server Manager Dashboard from our windows startup screen. Press
Windows key then select Server Manager from the start menu.

Select IIS service tab from you server manager dashboard on you left and scroll down to services
list and find world wide web publishing service inside the list. You need to check the status of
the service and if it is running you need to stop the service. To do so you need to select the world
wide web publishing service, right click on it and select stop services. It might take few minutes
wait until the status is updated with stopped sign.

Start up the Webgoat by opening the Webgoat-5.4 extracted folder on your Windows Server
2012 VM. In our case the Webgoat-5.4 is extracted inside our administrator download folder.

Navigate inside the extracted folder and double click on the WebGoat.bat (Don’t use the
WebGoat_8080.bat file). By default, a file extension is hidden we can enable from folder view
menu. Click on the view menu inside the folder and check File Name Extensions on top right
menu options.

You should see a status windows appear and Apache/Tomcat running:

Now, minimize this window.

Do not close this windows during the lab, as it will stop the Apache service as well as
WebGoat!

After it starts, open firefox inside your Windows Server 2012 server, and navigate to.

http://localhost/WebGoat/attack

Make sure the W and G on webgoat is capital.

You will next be prompted with a login. Log in with account:

Username: guest

Password: guest

Webgoat welcome interface.

http://localhost/WebGoat/attack

Most of these exercises will be done with Burp Suite, a full feature web proxy. Start burp from
you windows server 2012 VM desktop or starup screen. The startup screen prompt you with an
option to create or open an existing project. We will select a default option and continue with
temporary project and select next and click start Burp on next window with the default option. It
will take few minutes to load the dashboard.

Burp Suit dashboard.

We now need to configure Firefox to route all web traffic the Burp suite. This can be done by
selecting the menu button on the top right corner of your Firefox browser and select options.

Inside General scroll down to the bottom for Network Proxy options and click on settings.

Use the following settings as shown on the screenshot. Select Manual proxy configuration use
localhost as HTTP proxy with port number 8080 select Sock v5 and click ok to apply the setting
and close the options tab.

If you have set this up correctly, you can now click on the Start WebGoat button on the page
open inside Firefox, and the POST request to the webserver form your Firefox browser should
be captured by the Burp Suit as show (notice the intercept on button is in use):

Click the Forward button as shown in the above screenshot to allow the request through the
burp suit proxy.

Optionally, you can click on the Intercept On button in the Burp Suit to disable the holding of
requests. This will allow all requests to flow through the brup suite proxy uninterrupted. After
clicking on forward button, switch back to your Firefox and see a Webgoat Home page with
different Options on Left panel.

Step 1

Go to the WebGoat application in your browser. Click on the Parameter Tampering link on the
menu on the left, and select Exploit Hidden Fields as shown:

This page simulates a shopping cart feature on a website.

Purchase the TV normally to see how it work (it shows an amount charged to credit card of
2999)

POST request captured on Burp Suite for the request Exploit Hidden Field page.

Now, we want to enable Burp Suite to capture requests. Click the Intercept Off button in burp
suite if it is set to Intercept Off. If it already shows Intercept On, do not click it.

Now, go back to the WebGoat application and click the purchase Button.

Change the contents of the Price field to 5.00 and click Forward to complete the attack

You will see the new price you added. If this were a real application, it would get submitted to
the company. If there is no manual checking of the prices, and automated fulfillment, the item
would be send out.

Exercise 2 Cross Site Scripting (XSS)

In this lab we will be looking at how to perform a Cross Site Scripting attack against a “stored”
Cross Site Scripting vulnerability. The general goal of a Cross Site Scripting attack is to have a
user other than yourself execute a script/function on your behalf using their permission. One
common thing is executing password change, where a user unknowingly changes their password
to something picked by the attacker via a script. Another example and probably the most
common demonstration is having a user send the attacker his/her session cookies or tokens. This
is precisely the attack we’ll demonstrate in this exercise.

To begin, go back to the WebGoat start page. Remember if you’ve still got the intercept on
enabled in Burp, you’ll need to make sure you go there and hit the forward button for each
browsing action.

Once you’re back at the WebGoat start page, Select Cross Site Scripting > Stage 1 Stored XSS.

Just another friendly reminder, make sure you hit the forward button on the Burp Suite proxy if
you have it enabled, otherwise it’ll appear nothing is happening when you browse from step to
step.

The instructions say the following;

As Tom, execute a stored XSS attack against the stree field on the edit profile page. Verify that
jerry is affected by the attack.

So, we’ll actually be doing this as Tom. But we’ll want our script injection to affect Jerry. First
step is to login as Tom. As the instructions tell us, each user’s password is simply the all lower-
case version of the username. To login as Tom, click the drop-down button and select Tom’s
name form the list.

Enter “tom” as the password for the Tom Cat account, then select the login button. After logged
in, select the “View profile” option.

Next, you’ll want to select the employee form the list and click Edit Profile button.

Next you’ll want to select the Edit Profile button.

Here we’ll see all the editable fields for this profile. In the street field we will attempt to add a
script that would be executed by any other user viewing Tom’s Profile.

Next, you’ll want to make the street field read exactly as it is shown below. You’ll be adding the
string.

“><script>alert(“Owned by infosec”)</script>

To what’s already there. So the complete entry in the street field should read as follows.

221 HyperThread Rd. “><script>alert(“Owned by infosec”)</script>

After making the changes, go ahead and click the “Update Profile” button at the bottom to save
these changes. You should immediately see a popup alert that says, “Owned by Infosec”. See
below.

Click Ok and notice the change on Tom Street address field.

So the goal is Jerry Should basically see this same popup when he views our (Tom’s) profile. If
he see the script, then that means Tom has been able to successfully “store” a script on this
website that is transparently executed by Jerry upon Jerry viewing Tom’s profile. This would
essentially mean that anyone viewing Tom’s profile would execute his script in their browser.

Let’s test it out and see. You’ll need to hit the logout button and the button right. Then login
again as Jerry.

Remember, Jerry’s password is simply Jerry in all lowercase format. Once you’re logged in as
Jerry, select Tom’s account, then select the “View Profile” button on the right.

Selecting the ViewProfile button should cause the Owned by Infosec popup to now show up in
Jerry’s browser session. See below.

At this point you’ll also see the “You have completed Stage1: Stored XSS” message at this point
as well.

The implications are pretty strong here. What if the script did something like “change my
password to hacker” or “send my session id to owned@infosecinstitute.com” ? These are all
function that are very easily coded using Javascript or even just plain old html for that matter!

Exercise 3 Preventing Cross Site Scripting with HTTPOnly flag

Microsoft implemented cookie property, HttpOnly, that can help mitigate Cross-Site Scripting
attacks that could lead to stolen tokens, credentials and other malicious attacks. When an
HttpOnly cookie is passed by any browser able to understand it, it become inaccessible to client-
side scripts. This is one way of preventing Cross Site Scripting. Internet Explorer 6.0 and earlier
does not support HttpOnly.

In this WebGoat exercise, we’ll be looking at the differences between when the HttpOnly flag is
set and when it’s not.

Click on the “HttpOnly Test” portion on the WebGoat home page under Cross Site Scripting.
See below:

mailto:owned@infosecinstitute.com

You’ll want to make sure you’ve enabled intercept in the Burpsuite proxy.

Once you’ve made sure intercept is on, you’ll want to go back to the WebGoat page and select
the radio button turn off HTTPOnly. See below.

Once you make this change you should see your Burpsuite icon at the bottom of the screen
flashing to let you know it’s intercepted some data. Go ahead and switch to the Burpsuite screen.
Notice the HttpOnly variable is set to false.

Go ahead and hit the Forward button to pass the change.

Next, we’re going to see if we can read a cookie while the HttpOnly flag is turned off. Click the
Read Cookie button. You should see the following cookie pop up.

Go ahead and click Ok to the popup. You should now see Burpsuite intercept more traffic.

We can see that the httponly flag is set to false. So therefore the script that’s being executed to
read the cookie is able to run. This exercise is simply doing the script for you that we did in the
earlier XSS lab where caused the Infosec popup. Go ahead and hit the Forward button and return
to WebGoat. You should see the following message in red.

Next Select the Write Cookie button. Again you’ll see a cookie popup and upon hitting OK. You
should see traffic in Burpsuite again. This time you’ll see the Burpsuite has intercepted a “write
cookie” action.

Click forward to allow the request back to web browser.

Now go back to WebGoat and this time we’re going to turn on the HTTPOnly functionality. Do
this by selecting the “Yes” radio button to the right. See below.

Of course, after making this change, you will see alert flashes from Burpsuite yet again. This is
because selecting the “Yes” radio button has dynamically changed what’s displayed and changed
the functionality of the html to an extent. Go ahead and switch to Burpsuite and hit the forward
Button.

Now select the Read Cookie button as we did previously. You should see that the popup contains
only JSESSIONID.

Go ahead and hit the Ok button. As was before, this will cause another alert in Burpsuite.

Switch the Burpsuite and notice that even though the cookie is there the script was not able to
read all the information like unique2u information on cookie in the popup.

Hit the forward button and return to WebGoat. You should see that it tells you you’ve
successfully prevented the script form reading the cookie because HttpOnly was enabled.

Repeat these steps by hitting the “write Cookie” button. Once you get back to Burpsuite, the
results should look like the following.

Go ahead and hit the “Forward” button.

Now return to WebGoat to see that you’re completed the lesson.

Exercise 4 Basic SQL Injection

In this WebGoat exercise, we’ll be looking at how to perform basic SQL Injection. We’ll first do
the string injection exercise, then later follow that up with doing a “blind” injection attack.
Here’s a short definition of what SQL injection is;

“A SQL injection attack consists of insertion or “injection” of a SQL query via the input data
from the client to the application. A successful SQL injection exploit can read sensitive data form
the database, modify database data (Insert/Update/Delete), execute administration operation on
the database (such as shutdown the DBMS), recover the content of a given file present on the
DBMS file system and in some cases issue commands to the operating system”. -Source OWSP

Let’s take a username and login field on a web form for example. Typically when you enter a
username and password to login to a database via a web form (such as an online bank login), the
username and password are combined to form par of a sql query that basically says “If the
username and password I enter match what’s in the database (or form a true statement), then do
some action on this users behalf.” As it turns out there are many ways to make the username and
password part of the query equal “true”. This is precisely what we’ll be doing in this exercise.

Go back to your WebGoat start page and click on Injection Flaws> LAB: Sql Injection> Stage 1:
String SQL Injection.

After clicking each link, remember you’ll have to go to Burpsuite and hit the “Forward” button
to pass the request through the Burpsuite proxy.

The instructions say that wee are to try and use the Neville account which has admin privileges
to get to the point that we’re able perform and admin function. We’ll go to that, but first let’s
look at some basic way to see what’s being sent to the application, how it’s being sent, and
whether or not there are any apparent client-side control pushed to the browser.

First, we’ll use the first account in the list to try and see what we can get passed to the Post
request that goes to the application.

You should see activity in the Burpsuite proxy. Locate the where the username and password
strings are being passed in the proxy. See below.

Notice we can see the infosec string we entered. It’s also important to note that the username has
been converted to a numeric value and it’s being passed using a field identified as employee_id.
If we were doing more advanced injection attack such as using SQL functions like INSERT,
UNION, etc. We would have to tell SQL to perform the action to a specific field in the database.
We now know there’s field named “password” and one named “employee_id”.

Let’s try some basic tests to begin with. In the request that we have paused, let’s change the
password string of infosec to a single quote (‘). See the change below.

After making the change, go ahead and hit the “Forward” button. If you go back to the WebGoat
page, you should see that the login simply failed.

You should be back at the login field. Now click the drop down and change the login name to the
Neville admin account. Repeat the process, using the password of infosec. After you’ve captured
the request in Burpsuite. Make the following change;

After the password identifier, enter the following ‘OR 1=1--

That is single quote, OR space, one. Equal sign, one, dash dash. See below.

Next go ahead and hit the “Forward” button to pass the request. If you typed everything exactly
right. You should notice now that on the WebGoat page, you’re informed that you’ve completed
this lesson.

At this point, if we wanted to, we could delete profiles, view profiles and do other functions
under the privilege of the admin Neville admin account. Let’s move on to the next exercise and
do Blind SQL Injection using numeric values and operators.

Exercise 5 Blind SQL Injection

NOTE: You need to have WebGoat Version 5.4 to complete Blind SQL Injection. You can
download the zip file like the earlier version, but you need to make sure you must only run
one WebGoat version at a time. WebGoat version 5.4.zip will be provide by the instructor
along with the lab contents.

In this exercise we’re going to work on the premise that we’ve got a stolen credit card or at least,
we know the credit card number. We’re then going to try and do Blind SQL Injection to a credit
card database and extract the card’s PIN. Basically, we’ll use a comparison operator to try and
get SQL to tell us when we’ve gotten close to the correct PIN, then eventually narrow it down to

the extract PIN associated with the given credit card number. We’re given a few of the table
names, which are generally created using standard naming conventions.

Start by going back to the WebGoat start page and selecting Injection Flaws > Lab:SQL
Injection > Blind Numeric SQL Injection.

See Below.

Based on the instructions, we are to find the value in the field field pin which is part of the table
pins for the row with the cc_number of 1111222233334444.

So behind this form there is a database with a table named pins, which has a field name pin,
which also has a row named cc_number. And we have a known credit card number. The form
we’re presented with is basically created to check a number to see if it’s a valid account number.
There is probably a field in the database named “account_number” or something like that. But
we don’t know that for sure, and right now it’s not required that we know it, as wer’re simply
using this part of the form to create a query to try and access other parts of the database.

You’ll want to make sure you turn the intercept function off in the Burpsuite proxy before
starting this exercise.

First let’s do a simple test and find out if we can quickly discern the approximate number of
valid accounts. Change the 101 in the field to 102 and hit the Go button.

It should have returned the message to inform you that 102 is a valid account. Repeat this with
103, 104, etc.

Notice how will the 104 number being entered the message changes to say the account number is
not valid. Now got down from 101. Try 100, then 99 and continue down until you get the invalid
account number message again. What you should have figured out is that the valid account
number appear to range from 101 to 103. Now for the blind part. Since we know some valid
account numbers, we can try to use them to pass other commands to the database on the backend.

Enter the following query in the form field;

101 AND ((SELECT pin FROM pins WHERE cc_number=’1111222233334444’) > 100);

Now go ahead and hit the Go button. Immediately you should see that the message that confirms
a valid account number returns again. This means that what we’ve just said is “TRUE” as far as
SQL is concerned.

So, what we know no is that pin for the given credit card number is greater than 100. Awesome!
That really narrows it, down right?

Now let’s repeat that with a higher number. Change the number at the end of your query from
100 to 1000. Then hit enter again.

When you hit the Go button, the “Account number is valid” response remains. So that means we
now know the credit card PIN is more than 1000.

Now change the value to 10000. Hit Go again.

Whoa! We got a different response. This means that we just said something to SQL that’s not
true. Essentially, the PIN we’re looking for is not greater than 10000, but it is more than 100.

Let’s try to narrow it down some more. Try changing the value to 5000. What response do you
get?

Response should have been Invalid account number. Which means the PIN we’re searching for
is not greater than 5000.

Let’s cut that in half. Change the value to 2500. Hit Go. The response we get back is still Invalid
account. So we know it’s less than (or equal to) 2500.

Next try the value of 2200. You should see that it now say Valid Account number again.

Before looking below at the answer. Go ahead and keep incrementing and decrementing the
value until you find out what the PIN is. If you can’t figure it out after a few minutes, keep
following this lab.

Now change the value to 2250. Hit Go again. You should that we get a valid account number
response again. Now try 2260. It should return valid again. Next try 2265. This brings us another
valid account response. Try 2275.

Ok. I think you get the point here! Let me help you speed up the process. Just understand that
you might have to spend hours doing this in the real world to eventually find what you’re
looking for. Try the value of 2363. It should return that it’s a valid account number.

Now try 2364

We get an invalid account number response.

So if the PIN for the credit card number is greater than 2363, but not greater than 2364, then we
can assume the actual pin is 2364. Since we know that pins are not typically used in decimal
notation, it has to be a whole number that is more than 2363 but not than 2364. There’s only one
whole number that meets that criteria. 2364! Problem Solved. Blind Injection accomplished.

Go ahead and claim your prize by entering the string 2364 into the form field. See below.

